

April 18, 2025

All future editions are included.

Examples and code snippets assume Unix-like environment.
Software and library versions used:

Node v22

Fastfiy v5

Vite v6

Vue v3

React v19

1st edition

Chapter 3

Now that we've covered the state of modern JavaScript, it's
time dive into Fastify and Vite. We'll look first at Fastify, the
most mature and robust web server for Node.js. A strong
opinion, one would say. Hopefully after the following section
you'll understand why.

As covered before, it's 2025 and the JavaScript runtime
ecosystem has evolved substantially. Deno, Bun, Workerd —
and many others in development — can make one question if
Node.js is still the right choice. I, for one, am extremely eager
to try new stuff, and have been an early adopter on more than
one occasion. In this trade, things move fast and you have to
adapt. If you ignore new things, chances are, your skills
quickly become obsolete.

Hono is an example of new stuff I was eager to try. And I love
it. Enough to start recommending it instead of Fastify? No —
or perhaps, not yet. It's not about what I love the most, but
what makes more practical sense.

As someone with a strong Python background from an earlier
period in time, I can't help but see Fastify as an analog to
Flask — something small, yet incredibly fast and reliable.

And still can't help but see Node.js, in practical senses, as the
most stable and robust runtime available today, with the

A Fastify and Vite
Crash Course

Essential Fastify

https://hono.dev/
https://flask.palletsprojects.com/en/stable/

biggest community, support and general resources available.
Performance nowadays might lag behind Bun, for instance,
for some applications, but the feeling that something has
stood the test of time ends up weighing in the decision.

And the main reason I started to trust Fastify to begin with
was the fact I realized it's written and maintained by folks who
actively contribute to Node.js itself. The style of Fastify's code
follows the style of Node.js itself, with the utmost care and
precision. Fastify was built with performance in mind, and it
deserves its name.

This section is intended to fast track you through all of
Fastify's essentials, so rather than diving into deeper details,
you'll be presented with a series of snippets illustrating its
essential API features and characteristics, as well as best
practices.

Before starting, install these packages:

The basic setup code for a Fastify server is as follows:

Defining routes is very straightforward in Fastify.

% pnpm add fastify
% pnpm add fastify-plugin
% pnpm add @fastify/one-line-logger

import Fastify from 'fastify'

const server = Fastify()

server.get('/', (req, reply) => {
 reply.send('Hello world!')
})

await server.listen({ port: 8000 })

sh

js

https://www.packtpub.com/en-us/product/accelerating-server-side-development-with-fastify-9781800563582
https://fastify.io/docs/latest/Reference/Routes/

Like server.get() , all other HTTP methods are accounted for. If

the request takes PUT or POST data, it becomes available as

req.body .

If you post JSON with the correct headers, that is, Content-Type
set to application/json , req.body will have the parsed JSON.

If you need to parse x-www-from-urlencoded bodies, you can do so by employing the

@fastify/formbody plugin. If you need multipart bodies, use the @fastify/multipart

package. If you need something, chances are Fastify has a plugin for it.

In practice though, you'd want to write:

In one file, you're able to either start the server, or export it for
consumption by a test. Fastify is amazing for testing.

Notice in this scenario we explicitly await on ready() , to ensure

all plugins have been loaded before we attempt injecting

import Fastify from 'fastify'

export async function getServer() {
 const server = Fastify()

 server.get('/', (req, reply) => {
 reply.send('Hello world!')
 })

 await server.ready()

 return server
}

if (process.argv[1] === import.meta.filename) {
 const server = await getServer()
 await server.listen({ port: 8000 })
}

js

https://fastify.dev/ecosystem/

mock requests. The API used for mocking requests is quite
robust, and has been used to automatically generate an
internal API client based on Fastify routes.

With the getServer() function, we can write:

Going further, you'd probably define your routes as a Fastify
plugin. Fastify plugins are functions that take up to three
parameters. In its synchronous definition, the third parameter
is a function that tells Fastify's bootstrap code that the plugin
is done executing. Most commonly though, authors opt to use
the asynchronous definition, which eliminates the third
parameter altogether.

Create a routes.js file with the plugin code:

import { test } from 'node:test'
import { strictEqual } from 'node:assert'
import { getServer } from './basic-server.js'

test('Renders hello world', async () => {
 const server = await getServer()

 const response = await server.inject({
 method: 'GET',
 url: '/'
 })

 strictEqual(response.statusCode, 200)
 strictEqual(response.body, 'Hello world!')

 await server.close()
})

export default async function (fastify, options) {
 fastify.get('/', (_, reply) => {

js

js

https://github.com/fastify/light-my-request
https://github.com/mcollina/fastify-api
https://github.com/mcollina/fastify-api

And then modify getServer() to import it as follows:

In Fastify, plugins create their own encapsulation context —
that means anything you do in the scope of a plugin is valid
for that plugin only, and completely unseen by all others.

Unless of course you want a plugin to be registered at the
parent scope, in which case you'd use fastify-plugin , which
basically annotates the plugin function with a symbol telling
Fastify to skip creating a new encapsulation context for it.

 reply.send('Hello world!')
 })
 if (options.health) {
 fastify.get('/health', (_, reply) => {
 reply.send('ok')
 })
 }
}

import Fastify from 'fastify'
import routes from './routes.js'

export async function getServer() {
 const server = Fastify()

 await server.register(routes, {
 health: true,
 })

 await server.ready()

 return server
}

js

https://fastify.dev/docs/latest/Reference/Encapsulation/
https://github.com/fastify/fastify-plugin

Fastify also has a peculiar method for extending the server,
adding things to the Fastify server itself, or to Fastify's Request
and Reply objects. It does so in a way that prevents messing

up with V8's inline caches, which basically means making
sure objects have a pre-defined shape (set of properties) at
boot time and stay in that configuration at runtime.

This is a good moment to mention that Fastify wraps Node's IncomingMessage and

ServerResponse instances in its Request and Reply abstractions, respectively — the req and

reply parameters you see on route definitions.

In these wrappers, you still have access to the underlying native objects representing

requests and responses via req.raw and res.raw , though there are only a handful of

circumstances where it would make sense to touch them directly.

So to add something to the Fastify server instance, you do:

import Fastify from 'fastify'
import fp from 'fastify-plugin'
import routes from './routes.js'

export async function getServer() {
 const server = Fastify()

 await server.register(fp(routes), {
 health: true,
 })
 await server.ready()

 return server
}

server.decorate('helper', function () {
 // this will have the Fastify server instance context
})

js

js

https://mathiasbynens.be/notes/shapes-ics

And then server.helper() becomes safely available, and by

safely I mean in a way that doesn't cause V8 to create more
hidden classes than it needs — as mentioned before.

Here's a more elaborate example:

A lot to digest here: first, the decorate() call adds a serverURL
getter to the Fastify server instance. Next, we register an
onListen hook to set url after the server boots up and we can

then call Fastify's underlying server's address() method.

Say you wanted to also add req.fullURL to join server.serverURL
with the current request path. Here's how:

let url
server.decorate('serverURL', { getter: () => url })
server.addHook('onListen', () => {
 const { port, address, family } = server.server.address()
 const protocol = server.https ? 'https' : 'http'
 if (family === 'IPv6') {
 url = `${protocol}://[${address}]:${port}`
 } else {
 url = `${protocol}://${address}:${port}`
 }
})

let url

server.decorate('serverURL', { getter: () => url })
server.decorateRequest('fullURL', null)

server.addHook('onRequest', (req, reply, done) => {
 req.fullURL = `${server.serverURL}${req.url}`
 done()
})

js

js

https://fastify.dev/docs/latest/Reference/Decorators/
https://fastify.dev/docs/latest/Reference/Hooks/

To extend Fastify's Request object, use decorateRequest() . For
Reply , unsurprisingly, decorateReply() . Above you can also see

an example of using Fastify's request-level hooks — in this
case, onRequest , used to attach a value to the previously

predefined fullURL request property. Notice how the

decoration needs to happen before it even gets a value, just
so V8 doesn't create an additional hidden class when it does
get assigned.

That's why these decoration methods exist, essentially —
they're not trying to make things more complicated, they're
hiding away important optimizations required to completely
eliminate, or at least reduce, any performance overhead your
application might have.

There's a bit more to Fastify, some of which you'll still be
presented with in later chapters, but one could also say this is
the gist of it.

There's one thing we still need to cover here though:

Fastify's server instance options.

This is what a real world app's server options may look like:

server.addHook('onListen', (done) => {
 const { port, address, family } = server.server.address()
 const protocol = server.https ? 'https' : 'http'
 if (family === 'IPv6') {
 url = `${protocol}://[${address}]:${port}`
 } else {
 url = `${protocol}://${address}:${port}`
 }
 done()
})

const server = Fastify({
 connectionTimeout: 45 * 1000,

js

https://fastify.dev/docs/latest/Reference/Server/

In this snippet, we set a custom connection timeout (the
default is zero), we condition the enabling of a simplified
logger instance on the presence of a terminal and finally, we
set the HTTP request body limit to 100mb . Check out the full

reference.

This example is available in examples/3/fastify .

To recap, you have seen how to:

Create a Fastify server instance and start it

Add routes, hooks, decorators and plugins to it

Create a testable Fastify server factory

Create a Fastify test using Node.js' test runner

With this, you're all set to move forward.

Vite is one of the most transformative build tools to emerge in
the JavaScript ecosystem in recent years, no pun intended.

Created by Evan You (the author of Vue), Vite has established
itself as a core foundation for web development, with over 26
million weekly downloads.

Essential Vite

 logger: true,
 ...process.stdout.isTTY && {
 logger: {
 transport: {
 // Formatted logging for dev
 target: '@fastify/one-line-logger',
 }
 }
 },
 bodyLimit: 100 * 1024 * 1024,
})

https://fastify.dev/docs/latest/Reference/Server/
https://fastify.dev/docs/latest/Reference/Server/

Vite's key characteristic is that, unlike others bundlers like
Webpack, it leverages browsers' support for ES modules to
deliver client code. There's no need to package everything in a
single bundle beforehand, files are built and served isolated,
both in development and production modes.

Vite has a powerful plugin system, based on Rollup's plugin
interface with some custom extensions.

The main entry point of a Vite application is the index.html file.

The mere existence of this file is enough for Vite, no
configuration needed (yet). Let's give it a try:

Now create index.html :

Did you know <html> , <head> and <body> are optional tags as per the HTML5 spec?

And index.js :

And then run Vite's development server:

A few things to note: as mentioned before, even without a
configuration file, Vite is smart enough to build the module

% mkdir basic-vite
% pnpm add vite -D

<!doctype html>
<h1></h1>
<script type="module" src="/index.js">
</script>

document.querySelector('h1').innerText = 'Hello world!'

npx vite dev

sh

html

js

sh

https://html.spec.whatwg.org/multipage/syntax.html#syntax-tag-omission

loaded by index.html . With Vite's development server, you can

do changes to index.js and see them appear in the browser

nearly in real time.

It will only consider scripts that have type set to module .

You can have as many as you want — and that's why it's
convenient to have index.html as the front and central entry

point of your client application. If you include a non-module
<script> :

The build command will give you a warning:

<!doctype html>
<h1></h1>
<script type="module" src="/index.js">
</script>
<script src="/static.js">
</script>

% npx vite build
vite v6.2.6 building for production...

html

sh

But if you create a public/ folder and move static.js to it, it'll

automatically be added to your bundle.

It's time to start playing with Vite's configuration options.

Create a vite.config.js file as follows:

When you run npx vite build , you'll notice a couple of things.

First, the generated bundle is now located at ./build , and the

assets dir is now ./build/app . Open ./build/index.html and you

should see:

<script src="/static.js"> in "/index.html" can't be bundled without type="modu
✓ 3 modules transformed.
dist/index.html 0.12 kB │ gzip: 0.12 kB
dist/assets/index-DCw9hIbG.js 0.76 kB │ gzip: 0.43 kB
✓ built in 91ms

import { defineConfig } from 'vite'

export default defineConfig({
 root: import.meta.dirname,
 base: '/custom',
 build: {
 outDir: 'build',
 assetsDir: 'app',
 minify: false,
 }
})

<!doctype html>
<script type="module" crossorigin src="/custom/app/index-DSadDZK9.js">
</script>
<h1></h1>

js

html

Notice how we also explicitly set the Vite project's root to
import.meta.dirname , and disable minification with build.minify .

This example is available in examples/3/vite .

⁂

You're now armed with enough Fastify and Vite skills to
proceed.

Before we dive into @fastify/vite , let's explore what directly

integrating Fastify and Vite looks like.

To better understand what's involved in integrating Fastify
and Vite, let's manually create an SSR server for a Vue app.

First install all required dependencies:

Now let's create the client code — and place it under a client/
folder while we're at it, for better organization:

In client/index.html :

Direct Integration

<script src="/custom/static.js">
</script>

% pnpm add @fastify/middie
% pnpm add @fastify/one-line-logger
% pnpm add @fastify/static
% pnpm add fastify
% pnpm add vite
% pnpm add @vitejs/plugin-vue -D

sh

In client/mount.js :

In client/base.vue :

In client/base.js :

And finally, in client/server.js :

This is the file Fastify will load for SSR.

<!doctype html>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<div id="root"><!-- element --></div>
<script type="module" src="/mount.js"></script>

import { createApp } from './base.js'

createApp().mount('#root')

<template>
 <p>Hello world from Vue, Fastify and Vite!</p>
</template>

import { createSSRApp } from 'vue'
import base from './base.vue'

export function createApp () {
 return createSSRApp(base)
}

export { createApp } from './base.js'

html

js

html

js

js

What we want to happen is: when the user requests / , the
server executes createApp() and places the output inside the

HTML file, replacing the <!-- element --> placeholder.

First, let's also add vite.config.js :

import { join } from 'node:path'
import { defineConfig } from 'vite'
import vuePlugin from '@vitejs/plugin-vue'

export default defineConfig({
 root: join(import.meta.dirname, 'client'),
 plugins: [vuePlugin()],
 environments: {
 ssr: {
 build: {
 outDir: `dist/server`,
 ssr: true,
 rollupOptions: {
 input: {
 index: join(import.meta.dirname, 'client/server.js'),
 },
 },
 },
 }
 },
 builder: {
 async buildApp (builder) {
 await builder.build(builder.environments.client)
 await builder.build(builder.environments.ssr)
 }
 }
})

js

Quite a bit to unpack here. First thing to notice is the use of
the Vue plugin, which allows Vite to compile vue files.

Then, we have an SSR environment definition, so we can have
a separate build for the client/server.js file.

Vite 6 can have multiple build environments — with client and ssr being the most

commonly used ones. The client environment is always implicitly available; that's what

takes care of bundling all the code for the index.html file.

And finally, via builder.buildApp() , we're able to tell Vite to

always build these two environments when vite build runs.

We can now write our Fastify server. First let's take care of
serving pages in development mode, leveraging Vite's
development server from within Fastify. Let's begin with the
imports:

Next, let's write the basic boilerplate — where we set up the
Fastify instance, and also make sure we have access to Vite's
configuration file. For that we can use Vite's resolveConfig()
function, which takes a Vite inline configuration object.

With it, we can determine the location of the configuration file
we want to load. The function will assume the current working
directory if you omit configFile in the inline configuration

options.

import { join } from 'node:path'
import Fastify from 'fastify'
import Middie from '@fastify/middie'
import { resolveConfig, createServer, createServerModuleRunner } from 'vite'
import { renderToString } from 'vue/server-renderer'

export async function getServer (devFlag) {
 const dev = devFlag ?? process.argv.includes('--dev')

js

js

https://vite.dev/guide/api-javascript.html#inlineconfig

Now that we have the basic boilerplate for delivering
index.html with our server-side rendered Vue component in

development mode, we can add routing. First we'll need
Middie, a Fastify plugin to provide support for Express-style
middleware functions — which Vite uses.

 const server = Fastify({
 logger: true,
 ...(process.stdout.isTTY || devFlag) && {
 logger: {
 transport: {
 target: '@fastify/one-line-logger'
 }
 }
 },
 })

 const viteConfig = await resolveConfig({
 configFile: join(import.meta.dirname, 'vite.config.js')
 })

 const { root, base: baseOriginal, build } = viteConfig

 // Ensure viteConfig.base has no trailing slashes if defined
 const base = (baseOriginal ?? '/').replace(/(?<=\w+)\/$/, '')

 // Route setup

 return server
}

if (process.argv[1] === import.meta.filename) {
 const server = await getServer()
 await server.listen({ port: 3000 })
}

Next, Vite's development server options, the Vite development
server instance, and a Vite runner for the environment we
need (in this case, SSR). What's neat about runners is that
they provide an import() method that picks up any changes

you make to your files while the server is running — of course
you have to run it again.

Next, the route registration.

await server.register(Middie)

const devServerOptions = {
 server: {
 middlewareMode: true,
 hmr: {
 server: server.server,
 },
 },
 appType: 'custom',
}

const devServer = await createServer(devServerOptions)
const devRunner = createServerModuleRunner(devServer.environments.ssr)

server.use(devServer.middlewares)

server.get(base, async (req, reply) => {
 const indexHtmlPath = join(viteConfig.root, 'index.html')
 const indexHtml = await readFile(indexHtmlPath, 'utf8')
 const transformedHtml = await devServer.transformIndexHtml(
 req.url,
 indexHtml,
)
 const { createApp } = await devRunner.import('/server.js')

js

js

js

Since this is development mode, we:

Load the source index.html file every time;

Run it through Vite's transformIndexHtml() function;

And also load the client/server.js file every time.

And finally, we ensure Vite's dev server closes with Fastify.

To test it, you can run node server.js --dev .

And you'll also notice it will only work with the --dev flag for

the moment. To enable production mode, we have to make
some additions. First, bypass registering Middie and register

@fastify/static static delivery routes instead:

 const element = await renderToString(createApp())
 const html = transformedHtml.replace('<!-- element -->', element)
 reply.type('text/html')
 reply.send(html)
})

server.addHook('onClose', () => devServer.close())

if (dev) {
 await server.register(Middie)
} else {
 await server.register(async function assetFiles (scope) {
 await scope.register(FastifyStatic, {
 root,
 prefix: join(base || '/', build.assetsDir)
 })
 })

 await server.register(async function publicFiles(scope) {
 await scope.register(FastifyStatic, {
 root,

js

js

The reason we scope the @fastify/static module registrations

in their own plugins is to avoid having conflicting options.

Next, let's register a different route handler for production:

In the end, this is the directory layout we have:

 index: false,
 wildcard: false
 })
 })
}

if (dev) {
 // Omitted for brevity
} else {
 const bundlePath = join(viteConfig.root, viteConfig.outDir ?? 'dist')
 const indexHtml = readFileSync(join(bundlePath, 'index.html'), 'utf8')
 const { createApp } = await import(join(bundlePath, 'server', 'index.js'))

 server.get(base, async (_, reply) => {
 const element = await renderToString(createApp())
 const html = indexHtml.replace('<!-- element -->', element)
 reply.type('text/html')
 reply.send(html)
 })
}

direct/
├── package.json
├── server.js
├── client/
│ ├── base.vue
│ ├── base.js
│ ├── index.html

js

This example is available in examples/3/fastify-vite-direct .

You might think — This is great. This is simple, I can understand
all moving parts, I don't need no frameworks!

However, there are a few problems:

Vite's package needs to be available in production, even
though it's not part of the bundle delivered to the client
(obviously), it's still one extra dependency we have to load
just to be able to load Vite's configuration file.

If you try to run the server in production mode without
building the app first (running vite build) you'll get an error,

this scenario is completely unhandled.

You have to manually register development and production
routes for each of the client routes that you have. In this
simple root page example, it's definitely ok, but for multiple
routes you'll want to modularize this process.

If you want to have your SSR module be responsible for
setting up other aspects of the route handler, like
additional <head> tags, you have to manually set it up for

every route.

That's where we arrive at @fastify/vite .

@fastify/vite is the official Fastify plugin for Vite integration. It

takes care of much of what has been shown here so far. In
addition to eliminating the need for all the boilerplate you've
seen, it also has some other advantages:

Essential @fastify/vite

│ └── mount.js
└── vite.config.js

Vite's package does not need to be available in production,
@fastify/vite will cache all relevant config options it needs

as part of the bundle.

It provides friendlier messages for cases where, for
instance, you're attempting to launch a server in production
mode and have forgotten to build the client first.

It takes care of registering routes automatically, and also
allows you to cleanly define which client routes need to be
registered at the server-level for SSR.

It loads your Vite configuration file automatically, no matter
the format it's in — @fastify/vite will recognize js , mjs and

ts extensions. Needless to say, your TypeScript code is

also automatically supported by Vite. Not the Fastify
server code, but all the code under Vite's project root.

Let's move our direct integration example to @fastify/vite .

First, update package.json :

{
 "type": "module",
 "scripts": {
 "dev": "node server.js --dev",
 "start": "node server.js",
 "build": "vite build"
 },
 "dependencies": {
 "@fastify/vite": "^8.0.3",
 "fastify": "^5.3.0"
 },
 "devDependencies": {
 "vite": "^6.2.6",
 "@vitejs/plugin-vue": "^5.2.3"

js

@fastify/vite includes @fastify/middie and @fastify/static , so
they can be removed. We can also move vite to devDependencies
now.

Next, update vite.config.js :

Next, rename client/server.js to client/index.js . @fastify/vite
automatically recognizes the index.js file in your Vite project's

root to be the SSR module. In earlier versions of @fastify/vite ,
it was known as the client module. In the latest release of
@fastify/vite , the client module is now created from all Vite

environment entry points (instead of being assumed to be the
SSR environment's entry point), which are automatically
loaded and made available in the first parameter passed to
the prepareClient() hook. See its default definition below:

 }
}

import { join } from 'node:path'
import { defineConfig } from 'vite'
import vuePlugin from '@vitejs/plugin-vue'
import fastifyVitePlugin from '@fastify/vite/plugin'

export default defineConfig({
 root: join(import.meta.dirname, 'client'),
 plugins: [fastifyVitePlugin(), vuePlugin()],
})

async function prepareClient(entries, scope, config) {
 const clientModule = entries.ssr
 if (!clientModule) {
 return null
 }
 const routes =

js

js

@fastify/vite/plugin also takes care of setting up your build

environments properly, and also builder.buildApp() .

Next, update server.js as follows:

 typeof clientModule.routes === 'function'
 ? await clientModule.routes()
 : clientModule.routes
 return Object.assign({}, clientModule, { routes })
}

import Fastify from 'fastify'
import FastifyVite from '@fastify/vite'
import { renderToString } from 'vue/server-renderer'

export async function getServer (dev) {
 const server = Fastify()

 await server.register(FastifyVite, {
 root: import.meta.url,
 dev: dev ?? process.argv.includes('--dev'),
 async createRenderFunction ({ createApp }) {
 return async () => ({
 element: await renderToString(createApp())
 })
 }
 })

 server.get('/', (_, reply) => {
 return reply.html()
 })

 await server.vite.ready()

js

First things to notice:

We must always await on server.vite.ready() , no matter if in

production or development mode, to make sure all client
modules are loaded. And for this example, we have to
manually register a route handler and use reply.html() to send

the HTML page.

@fastify/vite works by breaking down the entire process we've

seen in the direct integration example into a series of well
defined steps, which are defined as hook functions that can
be overridden:

Here's a rundown of what each of them do:

prepareClient(entries, server, config)
As soon as all Vite build environments are loaded, they are

 return server
}

server.get('/', (_, reply) => {
 return reply.html()
})

await server.vite.ready()

└─ prepareClient()
 └─ createHtmlTemplateFunction()
 └─ createHtmlFunction()
 └─ createRenderFunction()
 └─ createRouteHandler()
 └─ createErrorHandler()
 └─ createRoute()

js

https://fastify-vite.dev/guide/getting-started#architectural-primitives
https://fastify-vite.dev/guide/getting-started#architectural-primitives

passed to the prepareClient() hook, the return of which will

be considered the client module.

createHtmlTemplateFunction(source)
This hook creates a templating function based on HTML
input — it's used to turn index.html into a templating

function. Every segment like <!-- element --> is transformed

into a string template literal.

createHtmlFunction(source, server, config)
This hook creates the reply.html() method based on the

function created by the createHtmlTemplateFunction() hook.

createRenderFunction(client, server, config)
This hook creates a render() method that is decorated into

all Fastify Reply objects, i.e., makes reply.render() available.

createRouteHandler({ client, route }, server, config)
This hook creates the default route handler for registering
Fastify routes based on the client module's routes array.

More on this in a bit!

createErrorHandler({ client, route }, server, config)
This hook creates the default error handler for all the
Fastify routes registered based on the client module's
routes array.

createRoute({ handler, errorHandler, route }, server, config)
This hook is responsible for actually registering an
individual Fastify route for each of your client-level routes,
defined by a routes array export.

For this integration, we just need createRenderFunction() —

notice how the client module, prepared from your specified
Vite build environments via prepareClient() , is passed as the

first parameter giving you access to createApp :

That's because @fastify/vite 's default definition for

createHtmlFunction() is as follows:

Although you can arrange it any way you like, the default
behavior is to pass the result of the reply.render() function to

async createRenderFunction ({ createApp }) {
 return async () => ({
 element: await renderToString(createApp())
 })
}

async function createHtmlFunction(source, scope, config) {
 const indexHtmlTemplate = await config.createHtmlTemplateFunction(source)
 if (config.spa) {
 return function () {
 this.type('text/html')
 this.send(indexHtmlTemplate({ element: '' }))
 return this
 }
 }
 if (config.hasRenderFunction) {
 return async function (ctx) {
 this.type('text/html')
 this.send(await indexHtmlTemplate(ctx ?? (await this.render(ctx))))
 return this
 }
 }
 return async function (ctx) {
 this.type('text/html')
 this.send(await indexHtmlTemplate(ctx))
 return this
 }
}

js

js

the reply.html() function, which is what can be seen

happening above.

In production, both reply.render() and reply.html() stay working

as expected, but instead of relying on Vite's development
server, they use the production bundle.

This example is available in examples/3/fastify-vite .

@fastify/vite also makes it easy to register multiple routes for

SSR based on your client code. In fact, the same route
configuration used for application client-side (for SPA
navigation) is reused by Fastify. Let's try it out with a new
project.

First, create a few view files:

In client/views/index.vue :

In client/views/other.vue :

Universal Routing

<template>
 <p>
 <router-link to="/other">
 Go to another page
 </router-link>
 </p>
</template>

<template>
 <p>This page is just for demonstrating client-side navigation.</p>
 <router-link to="/">
 Go back to index

html

html

These will be our route modules.

Next, let's add our core application files:

In client/base.js :

 </router-link>
</template>

import { createSSRApp } from 'vue'
import {
 createRouter,
 createMemoryHistory,
 createWebHistory
} from 'vue-router'

import base from './base.vue'
import routes from './routes.js'

export async function createApp (ctx, url) {
 const instance = createSSRApp(base)
 const history = import.meta.env.SSR
 ? createMemoryHistory()
 : createWebHistory()
 const router = createRouter({ history, routes })

 instance.use(router)

 if (url) {
 router.push(url)
 await router.isReady()
 }

 return { ctx, router, instance }
}

js

A pretty standard Vue Router setup, with the appropriate
history manager for SSR and client environments and
awaiting on isReady() before returning the Vue instance.

In client/routes.js :

In client/base.vue :

In client/mount.js :

export default [
 {
 path: '/',
 component: () => import('./views/index.vue'),
 },
 {
 path: '/other',
 component: () => import('./views/other.vue')
 }
]

<template>
 <router-view v-slot="{ Component }">
 <Suspense>
 <component
 :is="Component"
 :key="$route.path"
 />
 </Suspense>
 </router-view>
</template>

import { createApp } from './base.js'

createApp(window.hydration)

js

html

js

This setup enables SSR in such a manner that the
prerendered markup appears instantly on the client, but it
continues to operate as SPA — that is, if you navigate to other
URLs using <router-link> , there should be no full page reload,

which is the default behavior of Next.js and Nuxt applications.

Finally in the client/ folder, create index.js :

This is what we need to make available to the server for SSR.

Next, let's create our @fastify/vite renderer options.

In renderer.js :

 .then(({ instance, router }) => {
 router.isReady().then(() => {
 instance.mount('root')
 })
 })

export { createApp } from './base.js'
export { default as routes } from './routes.js'

import { renderToString } from 'vue/server-renderer'

export function createRoute ({ handler, errorHandler, route }, server) {
 server.route({
 url: route.path,
 method: 'GET',
 handler,
 errorHandler,
 })
}

export function createRenderFunction ({ createApp }) {
 return async function ({ app: server, req, reply }) {

js

js

@fastify/vite will run the createRoute() hook for every route

object present in the array exported by the client/routes.js
file, automatically. Putting it all together:

 const app = await createApp({ server, req, reply }, req.raw.url)
 const element = await renderToString(app.instance, app.ctx)
 return { element }
 }
}

import Fastify from 'fastify'
import FastifyVite from '@fastify/vite'
import * as renderer from './renderer.js'

export async function getServer (devFlag) {
 const dev = devFlag ?? process.argv.includes('--dev')

 const server = Fastify({
 logger: true,
 ...(process.stdout.isTTY || dev) && {
 logger: {
 transport: {
 target: '@fastify/one-line-logger'
 }
 }
 },
 })

 await server.register(FastifyVite, {
 root: import.meta.url,
 dev,
 renderer,
 })

 await server.vite.ready()

js

Let's see our server-side rendered / route:

On the client, if you click the link to /other , there will be no full

page reload as it will be going through Vue Router. You can of
course hit /other directly for its SSR version, in which case the

same will happen: the rendered page stays working as a SPA.

This example is available in examples/3/fastify-vite-routing .

 return server
}

if (process.argv[1] === import.meta.filename) {
 const server = await getServer()
 await server.listen({ port: 3000 })
}

% curl http://localhost:3000/
<!doctype html>
<script type="module" crossorigin src="/assets/index-DdvG5ZXm.js"></script>
<link rel="stylesheet" crossorigin href="/assets/index-Cc-1_JzF.css">
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<div id="root"><p> Go to another page </p></div>

sh

	Introduction ​
	Making Node.js fast ​
	My Dream Stack ​
	Intended Audience ​

	Modern JavaScript in 2025 ​
	From 2017 to 2025 ​
	Essential Node.js ​
	Package Management ​

	A Fastify and ViteCrash Course ​
	Essential Fastify ​
	Essential Vite ​
	Direct Integration ​
	Essential @fastify/vite ​
	Universal Routing ​

	Choosing a Rendering Strategy ​
	Multi-Page Applications ​
	Single Page Applications ​
	Server Side Rendering ​
	The Monolithic Architecture ​

	Building an Application Shell ​
	What Meta Frameworks Have in Common ​
	Building a Vue Application Shell ​
	A Deep Dive into @fastify/vite ​
	A Deep Dive into @fastify/vue ​
	getMeta(ctx) ​
	getData(ctx) ​
	onEnter(ctx) ​
	clientOnly ​
	serverOnly ​
	streaming ​
	configure(server) ​

	A Deep Dive into @fastify/react ​

	Fetching and Submitting Data ​
	Working with Form Data ​
	Working with JSON Data ​
	Handling Large Payloads with SIMDJSON ​
	From JSON to Cap'n Proto ​
	A Simple Example ​
	Sending Cap'n Proto Data ​
	Receiving Cap'n Proto Data ​

	Is Cap'n Proto Event Loop Friendly? ​

	Maintaining Sessions ​
	Stateless Sessions ​
	Stateful Sessions ​
	Federated Authentication ​

	Maximizing SSR Performance ​
	Avoiding Event Loop Blocking ​
	Using SSR Where Needed ​
	Adding SSR Caching ​

	Production Deployment ​
	SPA Deployment ​
	SSR Deployment ​
	Optimal Structure ​

	1st edition ​
	Hello there ​
	Acknowledgements ​
	Blank Page

